The Good Shepherd Catholic Primary School

Following Jesus,
The Good Shepherd,
in all we say and do
Maths Calculation Policy
2022-2023

Teaching for Mastery

This policy has been largely adapted from the Pixl Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy is used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations to give pupils a consistent and smooth progression of learning in calculations across the school.

Maths Mastery

At the centre of the mastery approach to the teaching of maths is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used across the school, which is in line with the requirements of the 2014 Primary National Curriculum.

Mathematical Language

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (reasoning). In certain year groups, the non-statutory guidance highlights the requirement for children to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant, real objects, apparatus, pictures of diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct 'The quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and
presenting a mathematically justification, argument or proof.' - 2021 Mathematics Programme of Study.

Concrete Pictorial Abstract approach

One of the key learning principles in Maths is the concrete pictorial abstract approach, often referred to as the CPA approach. The concrete pictorial-abstract approach, based on research by psychologist Jerome Bruner, suggests that there are three steps (or representations) necessary for pupils to develop understanding of a concept. Reinforcement is achieved by going back and forth between these representations.

Concrete representation (Build It! / Use It!)

The active stage - a student is first introduced to an idea or a skill by acting it out with real objects. In division, for example, this might be done by separating apples into groups of red ones and green ones or by sharing 12 biscuits amongst 6 children. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial representation (Draw It!)

The iconic stage - a student has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem. In the case of a division exercise this could be the action of circling objects.

Abstract representation (Solve it)

The symbolic stage - a student is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$ this is the ultimate mode, for it is clearly the most mysterious of the three.

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014 and the method(s) shown for each year group should be modelled to the vast majority of pupils. However, it is vital that pupils are taught according to the pathway that they are currently working at and are showing to have 'mastered' a pathway before moving on to the next one. Of course, pupils who are showing to be secure in a skill can be challenged to the next pathway as necessary.

Choosing a calculation method:

Before pupils opt for a written method, they should first consider these steps:

- Can I do it in my head using a mental strategy?
- Could I use some jottings to help me?
- Should I use a formal written method to work it out?

Calculation Guidance Principles

- Develop children's fluency with basic number facts
- Develop children's fluency in mental calculation
- Develop children's understanding of the = symbol
- Teach inequality alongside teaching equality
- Use empty box problems
- Use intelligent practice
- Expose mathematical structure and work systematically
- Move between the concrete and the abstract
- Contextualise the mathematics

Exemplification

You will see that throughout this document, calculations are presented in a variety of ways. It is important for pupils' mathematical understanding to experience and work with calculations and missing numbers in different positions relative to the $=$ symbol. Examples used in classwork and independent work should reflect this.

Estimation

Pupils are expected to use their developing number sense from Year 1 to make predictions about the answers to their calculations. As their range of mental strategies increases, these predictions and, later, estimates should become increasingly sophisticated and accurate. All teaching of calculation should emphasise the importance of making and using these estimates to check, first, the sense and, later, the accuracy of their calculations.

Concrete materials- Use it!
Progression in the use of manipulatives to support learning

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects						
0-9 digit cards						
Number track to 10						
Numbered counting stick	Counting stick					
Tens Frame	Tens Frame	Tens Frame				
	Place value charts - Tens and ones	Place value charts Hundreds, tens and ones	Place value charts Thousands, hundreds, tens and ones	Place value charts - Ten thousands, thousands, hundreds, tens, ones and tenths	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
Interlocking cubes Use one colour to represent one amount	Interlocking cubes - Use one colour to represent one amount	Dienes	Dienes	Dienes	Dienes	Dienes
			Place value counters	Place value counters	Place value counters	Place value counters

	Place value arrow cards tens and ones	Place value arrow cards tens and ones	Place value arrow cards H, T, O	Place value arrow cards Th, H, T, O	Place value arrow cards	Place value arrow cards
Part-whole mat	Part-partwhole mat	Part-partwhole mat	Part-partwhole model	Part-partwhole model	Part-partwhole model	Part-part-whole model
	Bar model with real life objects/pictori al objects/repres entative objects eg. counters	Bar model with counters /Dienes progressing to numbers	Bar model with numbers			
Bead strings - ten	Bead strings twenty	Bead strings hundred				
Numicon shapes						
Double sided counters						
Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount

Progression in the teaching of counting in the foundation stage

Pre-counting The key focus in pre-counting is an understanding of the concepts more, less and the same and an appreciation of how these are related. Children at this stage develop these concepts by comparison and no counting is involved.	Ordering Count by reciting the number names in order forwards and backwards from any starting point.	One to one correspondence One number word has to be matched to each and every object. Lack of coordination is a source of potential error it helps if children move the objects as they count, use large rhythmic movements, or clap as they count.	Cardinality (Knowing the final number counted is the total number of objects) Count out a number of objects from a larger collection. Know the number they stop counting at will give the total number of objects.
Pre-counting ideas Provide children with opportunities to sort groups of objects explicitly using the language of more and less. Which group of apples has the most? Which group of apples has the least?	Ordering ideas Provide children with opportunities to count orally on a daily basis. Rote count so that children are able to understand number order and can hear the rhythm and pattern. Use a drum or clap to keep the beat.	One to one correspondence ideas Play counting games together moving along a track, play games involving amounts such as knocking down skittles. Use traditional counting songs throughout the day ensuring children have the visual/kinaesthetic resources eg. 5 little ducks, 10 green bottles	Cardinal counting ideas How many bananas are in my fruit bowl? Allow children to physically handle the fruit. Provide children with objects to point to and move as they count and say the numbers
Subitising (recognise small numbers without counting them) Children need to recognise small amounts without counting them eg. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small	Abstraction You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch	Conservation of number MASTERY! Ultimately children need to realise that when objects are rearranged the number of them stays the same.	End of year counting expectations - count reliably to 20 - count reliably up to 10 everyday objects

groups of randomly arranged shapes stuck on cards.	(they are at a distance), see, that move around. Children also find it difficult to count a mix of different objects, or similar objects of very different sizes	• estimate a number of objects then check by counting - use ordinal numbers in context eg first, second, third • count in twos, fives and tens \bullet order numbers $1-20$ - say 1 more/ 1 less than a given number to 2	
Subitising ideas Provide children with opportunities to count by recognising amounts.	Abstraction ideas How many pigs are in this picture?	Conservation of number Provide children with a variety of objects to count	The amount is 5 and it does not change.

Progression in the teaching of calculations

| | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

		commutative multiplication	multiplication Grid method			
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digit- concrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digit concrete and pictorial)	Short division (up to 4 digits by a 1 digit number remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number- interpret remainders as whole numbers, fractions or round)

Progression in the teaching of place value

Foundation	
Understanding ten	
A TENS FRAME is a simple maths	'Ten

tool that helps children:

- Keep track of counting
- See number relationships
- Learn addition to 10
- Understand place value

Use tens frames flash cards daily to ensure children recognise amounts.

Use empty tens frames to fill with counters to enable children to understand number relationships.

Either fill the tens frame in pairs or in rows. In rows shows 5 as a benchmark. Children can easily see more than 5 or less.

Setting the counters in pairs, naturally allows the children to see addition concepts.

Understanding numbers up to 20
'Ten' is the building block of our Base 10 numeration system. Young children can usually 'read' two-digit numbers long before they understand the effect the placement of each digit has on its numerical value. A child might be able to correctly read 62 as sixtytwo and 26 as twenty-six, and even know which number is larger, without understanding why the numbers are of differing values.

Ten-frames can provide a first step into understanding two-digit numbers simply by the introduction of a second frame. Placing the second frame to the right of the first frame, and later introducing numeral cards, will further assist the development of place value understanding.

Year 3 onwards
Understanding numbers up to one thousand
Continue developing place value through the use of manipulatives.

Use Dienes blocks and place value charts.

Progression in the teaching of place value

Progression in the teaching of calculations

ADD IT!					
Objective and strategies	Concrete BUILD IT/USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!		
Combine two parts to make a whole model. Part-part-whole model Teach the children that the cubes/counters represent the real-life objects. Use cubes to add two numbers together as a group or in a bar.	Whole $\mathbf{2}$ 10 Part Part $\operatorname{ll\\| } \\| 0 \rightarrow 0$		Use the part-part whole diagram as shown above to move into the abstract. Use the term 'number sentence' $\begin{aligned} & 5+5=10 \\ & 10=5+5 \end{aligned}$		
Start at the larger number and count on. Start with the larger number on the bead string then count on 1	-eceeceee $1-\mathrm{mm}$	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$4+7=11$ Place the larger number in your head and count on the smaller number to find your answer		

by 1 to find the answer.	Use counters on a number track to count on. 00000000000000000000		
Regrouping to make 10. Start with the bigger number and use the smaller number to make 10.	$\begin{aligned} & 6+5=11 \\ & \begin{array}{\|l\|l\|l\|l\|l\|} \hline 6 & & 0 & - & 6 \\ \hline 6 & 6 & \ddots & 9 & 6 \\ \hline \end{array} \end{aligned}$		$7+4=11$ If I am at seven, how many more do I need to make 10. How many more dol add on now?
Adding three single digits. Encourage children to use known facts.	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7.	Add together three groups of objects. Draw a picture to recombine the groups to make 10	$\begin{aligned} & 4+6+7 \\ & 10+7=17 \end{aligned}$ Combine the two numbers that make 10 and then add
Column methodno regrouping Use Dienes to add tens and ones before moving on to place value counters.		After practically using the base 10 blocks and place value counters, children can draw the Dienes to help them to solve addition calculations.	$\begin{aligned} & 42+36=78 \\ & 42 \\ & +36 \\ & +78 \end{aligned}$

	\odot 0 0000 0000 0 00000	hundreds tens ones $/ / / /$ ㅁㅁ $/ /$ ロロロ ロロロ 6 9 After practically using Dienes，children can draw the＇tens＇and＇ones＇．	Only select numbers which do not involve regrouping．
Column method regrouping Make both numbers on a place value grid．	Add up the units and exchange 10 ones for one 10 and so on． This can also be done with Dienes to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100 ． Continue using place value counters as children begin to work with decimals．	If necessary children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding．	$\begin{array}{r} 657 \\ +84 \\ \hline 741 \\ \hline 11 \end{array}$ As the children move on， introduce decimals with the same number of decimal places． $\begin{array}{r} 84.5 \\ +68.7 \\ \hline 153.2 \\ \hline 11 \end{array}$ Then move onto decimals with a different number of decimal places． 56.159 7.150 2.520

			$\begin{gathered} +4.100 \\ \hline 69.929 \\ \hline 1 \end{gathered}$
Add fractions Count in fraction steps using real objects and a number line. Use Numicon to add fractions	$2+\frac{1}{3}=\frac{3}{3}+\overline{3}+\frac{1}{3}=\frac{7}{3}$	$\frac{1}{4}+\frac{1}{3}$ $\left.\begin{array}{\|c\|c\|c\|}\hline \frac{1}{4} & \frac{1}{3} \\ \hline \frac{1}{12} & \left.\frac{1}{12} \right\rvert\, \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} & \frac{1}{12}\end{array} \frac{1}{12}\right\}$	$\frac{1}{4}+\frac{1}{3}=$ $\frac{1 \times 3}{4 \times 3}+\frac{1 \times 4}{3 \times 4}$ $\frac{3}{12}+\frac{4}{12}=\frac{7}{12}$

Progression in Calculations Policy

SUBTRACT IT!

Objective and strategies	Pictorial BUILD IT/USE IT	Concrete I DRAW IT!	Abstract SOLVE IT!
Taking away ones	Use real-life physical objects, counters, cubes etc. to show how objects can be taken away. $6-2=4$ - 00 -	Cross out drawn objects to show what has been taken away. $5-2=3$	$\begin{aligned} & 4=6-2 \\ & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back Use counters and move them away from the group	Make the larger number in the subtraction calculation. Move the beads along the bead string whilst counting backwards in ones.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

whilst counting backwards			
Use cubes to subtract a number from the bar.		Use the bar Part + Part = Whole Whole - Part = Part	
Find the difference Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	 II 12	Count on to find the difference. Comparison bar modelling Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between two numbers.	Hannah has 23 pencils, Helen has 15 pencils. Find the difference between the number of pencils.

Part-partwhole. model Link to addition use whole model to help explain the inverse.	 If 10 is the whole and 5 is one of the parts. What is the other part?	Use a pictorial representation of objects to show the part-part-whole model.	$\begin{aligned} & 10-5= \\ & 10-?=5 \end{aligned}$
Make 10	$14-5$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer. $13-7=6$ 314	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?
Column method without regrouping	$75-42=$ Use Dienes to make the bigger number then take the smaller number away.	Draw the Dienes or place value counters alongside the written calculation to help to show working.	This will lead to a clear written column subtraction. $\begin{aligned} 73-52 & =21 \\ -70+3 & = \\ -\frac{50+2}{20+1} & =21 \end{aligned}$

	Show how you partition numbers to subtract. Again, make the larger number first.		$\begin{array}{r} 69 \\ -47 \\ \hline 22 \end{array}$
Column method with regrouping	Make the larger number with the Dienes or place value counters. Start with the ones, can I take away 8 from 4 easily? । need to exchange one of my tens for ten ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.	Draw the counters onto a place value grid and show what has been taken away by crossing the counters out as well as clearly showing the exchanges made. When confident, children can find their own way to record the exchange/regrouping.	

Progression in Calculations Policy			
MULTIPLY IT !!!			
Objective and strategies	Concrete BUILD IT/USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
Doubling Double five is ten.	Use practical activities to show how to double a number. $5 \times 2=10$	Draw pictures to show how to double a number. Double 4 is 8	Double 16 Double the 10, then double the 6 . Partition a number and then double each part before recombining it back together.
Counting in multiples		Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

	Count in multiples supported by concrete objects in equal groups.		
Repeated addition	8908 Use different objects to add equal groups.	$5+5+5=15$	Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. $4 \times 2=8$ $2 \times 4=8$ $2 \times 4=8$ $4 \times 2=8$	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

		Link arrays to area of rectangles	
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method

Progression in Calculations Policy
 DIVIDE IT!

It is important to make links with fractions

Objective and strategies	Concrete BUILD IT/USE IT!	Pictorial DRAW IT!					Abstract SOLVE IT!
Sharing objects into groups. If we are dividing by two we are finding one half.	I have 10 cubes; can you share them equally into 2 groups?	Children use pictures or shapes to share quantities.$8 \div 2=4$					One half of 14 is 7 $\begin{aligned} & 1 / 2 \text { of } 14=7 \\ & 14 \div 2=7 \end{aligned}$ Share 9 cakes between three people. $9 \div 3=3$
Division grouping. If we are dividing by three we are finding one third.	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.					$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Exchange this ten for ten ones and then share the ones equally among the groups.

Look how much is in 1 group so the answer is 14 .

Times Tables are at the heart of mental arithmetic, which in itself helps form the basis of a child's understanding and ability when working with number. Once the children have learnt their times tables by heart, they are then able to work far more confidently and efficiently through a wide range of more advanced calculations. At The God Shepherd Catholic Primary School, we believe that through a variety of interactive, visual, engaging and rote learning techniques, all children can achieve the full times table knowledge by the time they enter Year 5

Reception	Year 1	Year 2	Year 3	Year 4	Year 5 \& 6
I can count in steps of 1 I can count in steps of 2 I can count in steps of 5 I can count in steps of 10	I can count in steps of 1 I can count in steps of 2 I can count in steps of 5 I can count in steps of 10	I know my 2 times table I know my 5 times table I know my 10 times table I can count in steps of 3	I know my 3 times table I know my 6 times table I know my 4 tables times I know my 8 tables times	I know my 7 times table I know my 9 times table I know my 11 tables times I know my 12 tables times	I know my 7 times table I know my 9 times table I know my 11 tables times I know my 12 tables times

Rote learning

Times tables will be recited daily. Chant as: 'One times two is two, two times two is four, three times two is six'
Also chant as 'one multiplied by two is two, once two is two, one lot of two is two, one group of two is two, the product of one
and two is two etc.'
Also chant as factor, factor, product such as $2,2,4$ and the $2,3,6$ etc.

Homework

Children are encouraged chant, practice and complete multiplication skills on IXL at home.

$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$
$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$
$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$
$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$
$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$
$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	$4 \times 6=24$	$5 \times 6=30$
$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$
$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$
$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$
$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$
$1 \times 11=11$	$2 \times 11=22$	$3 \times 11=33$	$4 \times 11=44$	$5 \times 11=55$
$1 \times 12=12$	$2 \times 12=24$	$3 \times 12=36$	$4 \times 12=48$	$5 \times 12=60$

Process of teaching times tables

IENS FRAME IDEAS

LIFE SIZE TEN	Create a life-size ten frame in the classroom and outdoor play area. Use counters, pennies, teddies, gingerbread men, children etc.
FRAME	Flash ten frame briefly and have children write the number on a whiteboard. Using whiteboards, rather than having children say the number, ensures that all children attempt to respond and allows the teacher to assess class progress. When the response is oral, not all child responses are audible. Encourage children to share the different strategies used to find the total number of dots for cards, "How did you see it?" This can be varied by asking children to write the number and draw the pattern they saw, or by having them build the number flashed on their own blank frame
FLASH	Once children are familiar with the basic patterns, and know them automatically, flash a 10 frame or dot card and ask them to name the number that is one more than the number flashed. Variation: ask children to give the number that is two more/one less/double/ten more than the number flashed.
MORE	

